问题
解答题
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0 (1)求证:{an}是等比数列; (2)若数列{an}的公比满足q=f(m)且b1=a1,bn=
|
答案
(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,(m≠-3)
∴
=an+1 an
,2m m+3
∴{an}是等比数列.
(2)由b1=a1=1,q=f(m)=
,n∈N且n≥2时,2m m+3 bn=
f(bn-1)=3 2
•3 2
, 得2bn-1 bn-1+3 bnbn-1+3bn=3bn-1⇒
-1 bn
=1 bn-1
.1 3 ∴{
}是1为首项1 bn
为公差的等差数列,1 3 ∴
=1+1 bn
=n-1 3
,n+2 3 故有bn=
.3 n+2