问题 解答题
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1bn=
3
2
f(bn-1)(n∈N*,n≥2),求证{
1
bn
}
为等差数列,并求bn
答案

(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3,

两式相减,得(3+m)an+1=2man,(m≠-3)

an+1
an
=
2m
m+3

∴{an}是等比数列.

(2)由b1=a1=1,q=f(m)=
2m
m+3
,n∈N且n≥2时,
bn=
3
2
f(bn-1)=
3
2
2bn-1
bn-1+3
  
bnbn-1+3bn=3bn-1
1
bn
-
1
bn-1
=
1
3
.
∴{
1
bn
}是1为首项
1
3
为公差的等差数列,
1
bn
=1+
n-1
3
=
n+2
3
故有bn=
3
n+2
.

问答题
单项选择题