问题
解答题
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列, (1)求数列{an}的通项公式; (2)若bn=log2|an|,设Tn为数列{
|
答案
(1)∵S3,S2,S4成等差数列
∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4
所以a4=-2a3
∴q=-2
an=a1qn-1=(-2)n+1
(2)bn=log2|an|=log22n+1=n+1
=1 bnbn+1
=1 (n+1)(n+2)
-1 n+1 1 n+2
Tn=(
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n+1
)=1 n+2
-1 2 1 n+2
λ≥
=Tn bn+1
=n 2(n+2)2
×1 2 1 n+
+44 n
因为n+
≥4,所以4 n
×1 2
≤1 n+
+44 n 1 16
所以λ最小值为1 16