问题 解答题
在数列{an}中,a1=1,an+1=2an+2n,(Ⅰ)设bn=
an
2n-1
,证明:
(Ⅰ)数列{bn}是等差数列;
(Ⅱ)求数列{
n2
an
}的前n项和Sn
答案

(Ⅰ)证明:由an+1=2an+2nbn+1=

an+1
2n
=
2an+2n
2n
=
an
2n-1
+1=bn+1

又b1=a1=1,因此数列{bn}是首项为1,公差为1的等差数列

(Ⅱ)由(Ⅰ)得bn=1+(n-1)•1=n=

an
2n-1

an=n•2n-1

n2
an
=
n
2n-1

Sn=1+

2
2
+
3
22
+
4
23
+…+
n
2n-1
,…(1)

1
2
Sn=
1
2
+
2
22
+
3
23
+
4
24
+…
n-1
2n-1
+
n
2n
,…(2)

(1)-(2)得

1
2
Sn=1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-
n
2n

=

1•[1-(
1
2
)
n
]
1-
1
2
-
n
2n
=2-(2+n)
1
2n

Sn=4-(2+n)

1
2n-1

判断题
单项选择题