问题
解答题
在数列{an}中,a1=1,an+1=2an+2n,(Ⅰ)设bn=
(Ⅰ)数列{bn}是等差数列; (Ⅱ)求数列{
|
答案
(Ⅰ)证明:由an+1=2an+2n得bn+1=
=an+1 2n
=2an+2n 2n
+1=bn+1an 2n-1
又b1=a1=1,因此数列{bn}是首项为1,公差为1的等差数列
(Ⅱ)由(Ⅰ)得bn=1+(n-1)•1=n=
,an 2n-1
∴an=n•2n-1,
∴
=n2 an n 2n-1
则Sn=1+
+2 2
+3 22
+…+4 23
,…(1)n 2n-1
Sn=1 2
+1 2
+2 22
+3 23
+…4 24
+n-1 2n-1
,…(2)n 2n
(1)-(2)得
Sn=1+1 2
+1 2
+1 22
+…+1 23
-1 2n-1
.n 2n
=
-1•[1-(
)n]1 2 1- 1 2
=2-(2+n)n 2n
.1 2n
∴Sn=4-(2+n)1 2n-1