问题
解答题
在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2) (Ⅰ)证明:{
(Ⅱ)求数列{an}的通项; (Ⅲ)若λan+
|
答案
(Ⅰ)将3anan-1+an-an-1=0(n≥2)整理得:
-1 an
=3(n≥2),1 an-1
所以{
}是以1为首项,3为公差的等差数列.1 an
(Ⅱ)由(Ⅰ)可得:
=1+3(n-1)=3n-2,所以an=1 an
.1 3n-2
(Ⅲ)若λan+
≥λ恒成立,即1 an+1
+3n+1≥λ恒成立,整理得:λ≤λ 3n-2
. (3n+1)(3n-2) 3(n-1)
令cn=
,(3n+1)(3n-2) 3(n-1)
则可得 cn+1-cn=
-(3n+4)(3n+1) 3n
=(3n+1)(3n-2) 3(n-1)
.(3n+1)(3n-4) 3n(n-1)
因为n≥2,所以
>0,即{cn}为单调递增数列,所以c2最小,c2=(3n+1)(3n-4) 3n(n-1)
,28 3
所以λ的取值范围为(-∞,
].28 3