问题
填空题
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为______.
答案
设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2,
若q=1,则Sn=na1,式显然不成立,
若q≠1,则为2
=a1(1-qn) 1-q
+a1(1-qn+1) 1-q
,a1(1-qn+2) 1-q
故2qn=qn+1+qn+2,
即q2+q-2=0,
因此q=-2.
故答案为-2.