问题
解答题
已知数列{an}的前n项和为Sn,且满足a1=
(1)判断{
(2)求Sn和an; (3)求证:S12+S22+…+Sn2≤
|
答案
(1)S1=a1=
,∴1 2
=21 S1
当n≥2时,an=Sn-Sn-1=-2SnSn-1,∴
-1 Sn
=21 Sn-1
∴{
}为等差数列,首项为2,公差为2…(4分)1 Sn
(2)由(1)知
=2+(n-1)×2=2n,∴Sn=1 Sn
…(6分)1 2n
当n≥2时,an=-2SnSn-1=-2•
•1 2n
=-1 2(n-1) 1 2n(n-1)
∴an=
…(9分)
n=11 2 -
n≥2,n∈N1 2n(n-1)
(3)S12+…+Sn2=
(1 4
+1 12
+…+1 22
)≤1 n2
(1+1 4
+1 1×2
+…+1 2×3
)=1 (n-1)×n
(1+1-1 4
+…+1 2
-1 n-1
)=1 n
(2-1 4
)=1 n
-1 2
…(13分)1 4n