问题
解答题
已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N+.
(Ⅰ)求的q值;
(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{bn}的前n和Tn.
答案
(Ⅰ)当n=1时,a1=S1=p-2+q
当n≥2时,an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2
∵{an}是等差数列,a1符合n≥2时,an的形式,
∴p-2+q=2p-p-2,
∴q=0
(Ⅱ)∵a3=
,由题意得a3=18a1+a5 2
又a3=6p-p-2,∴6p-p-2=18,解得p=4
∴an=8n-6
由an=2log2bn,得bn=24n-3.
∴b1=2,
=bn+1 bn
=24=16,即{bn}是首项为2,公比为16的等比数列24(n+1)-3 24n-3
∴数列{bn}的前n项和Tn=
=2(1-16n) 1-16
(16n-1).2 15