已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,1成等差数列. (1)求数列{an}的通项公式; (2)若an2=2-bn,设Cn=
|
(1)由题意2an=Sn+1,an>0
当n=1时2a1=a1+1∴a1=1
n≥2时,sn=2an-1,sn-1=2an-1-1
两式相减an=2an-2an-1(n≥2)
整理得
=2(n≥2)(4分)an an-1
∴数列{an}1为首项,2为公比的等比数列.
∴an=a1•2n-1=1×2n-1=2n-1(5分)
(2)an2=2-bn=22n-2
∴bn=2-2n(6分)
Cn=
=bn an
=2-2n 2n-1
Tn =4-4n 2n
+0 2
+-4 22
+…+-8 23
+8-4n 2n-1
①4-4n 2n
Tn=1 2
+0 22
+…+-4 23
+8-4n 2n
②4-4n 2n+1
①-②
Tn=-4(1 2
+1 22
+…1 23
) -1 2n
(9分)4-4n 2n+1
=-4•
-
(1-1 22
)1 2n-1 1- 1 2
=-2(1-4-4n 2n+1
)-1 2n-1
=4-4n 2n+1
-2(11分)n+1 2n-1
∴Tn=
-4(12分)n+1 2n-2