问题
解答题
在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2,n∈N*). (1)试判断数列{
(2)设{bn}满足bn=
(3)若λan+
|
答案
(1)∵数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2,n∈N*),
∴an-1-an=3anan-1,
∴
-1 an
=3(n≥2).1 an-1
故数列{
}是等差数列.1 an
(2)由(1)的结论可得bn=
=1+(n-1)×3,1 an
所以bn=3n-2,
∴Sn=
=n(1+3n-2) 2
.n(3n-1) 2
(3)将an=
=1 bn
代入λan+1 3n-2
≥λ并整理得λ(1-1 an+1
)≤3n+1,1 3n-2
∴λ≤
,(3n+1)(3n-2) 3n-3
原命题等价于该式对n≥2恒成立.
设Cn=
,(3n+1)(3n-2) 3n-3
则Cn+1-Cn=
>0,Cn+1>Cn,(3n+1)(3n-4) 3n(n-1)
∵n=2时,Cn的最小值C2为
,28 3
∴λ的取值范围是(-∞,
].28 3