问题
选择题
已知定义在(-1,1)上的函数f(x)=x-sinx,若f(a-2)+f(4-a2)<0,则a的取值范围是( )
|
答案
由f(x)=x-sinx且定义域(-1,1),
求导得:f′(x)=1-cosx≥0在定义域上恒成立,
所以函数在定义域上为单调递增函数,
又因为y=x与y=-sinx均为奇函数,所以其和为奇函数,
所以f(a-2)+f(4-a2)<0⇔-1<a-2,a2-4<1 a-2<a2-4
解可得2<a<5
故选C.