问题 解答题
在数列an中,a1=2,an+1=2an+2n+1(n∈N).
(1)求证:数列{
an
2n
}
为等差数列;
(2)若m为正整数,当2≤n≤m时,求证:(m-n+1)(
n•3n
an
)
1
m
m2-1
m
答案

(I)由an+1=2an+2n+1变形得:

an+1
2n+1
=
an
2n
+1,即
an+1
2n+1
-
an
2n
=1

故数列{

an
2n
}是以
a1
2
=1
为首项,1为公差的等差数列

(II)由(I)得an=n•2n(m-n+1)(

n•3n
an
)
1
m
m2-1
m
即(m-n+1)(
3
2
)
n
m
m2-1
m

f(n)=(m-n+1)•(

3
2
)
n
m
,则f(n+1)=(m-n)•(
3
2
)
n+1
m

m>n≥2时,

f(n)
f(n+1)
=
m-n+1
m-n
•(
2
3
)
1
m
=(1+
1
m-n
)•(
2
3
)
1
m
≥(1+
1
m-2
)•(
2
3
)
1
m

(1+

1
m-2
)m=1+
C1m
1
m-2
+>1+
m
m-2
>2>
3
2
1+
1
m-2
>(
3
2
)
1
m

f(n)
f(n+1)
>1,则f(n)为递减数列.

当m=n时,f(n)>f(n+1)

∴当m≥n≥2时,f(n)递减数列.

f(x)max=f(2)=(

9
4
)
1
m
(m-1),故只需证(
9
4
)
1
m
(m-1)≤
m2-1
m

要证:(m-n+1)(

3
2
)
n
m
m2-1
m
即证
9
4
≤(
m+1
m
)m=(1+
1
m
)m,而m≥2时,(1+
1
m
)m
C0m
+
C1m
1
m
+
C0m
1
m2
=2+
1
m2
m(m-1)
2

=2+

m-1
2m
=2+
1
2
-
1
2m
≥2+
1
2
-
1
2×2
=
9
4

故原不等式成立.

单项选择题
多项选择题