问题
解答题
在数列an中,a1=2,an+1=2an+2n+1(n∈N). (1)求证:数列{
(2)若m为正整数,当2≤n≤m时,求证:(m-n+1)(
|
答案
(I)由an+1=2an+2n+1变形得:
=an+1 2n+1
+1,即an 2n
-an+1 2n+1
=1an 2n
故数列{
}是以an 2n
=1为首项,1为公差的等差数列a1 2
(II)由(I)得an=n•2n(m-n+1)(
)n•3n an
≤1 m
即(m-n+1)(m2-1 m
)3 2
≤n m m2-1 m
令f(n)=(m-n+1)•(
)3 2
,则f(n+1)=(m-n)•(n m
)3 2 n+1 m
当m>n≥2时,
=f(n) f(n+1)
•(m-n+1 m-n
)2 3
=(1+1 m
)•(1 m-n
)2 3
≥(1+1 m
)•(1 m-2
)2 3 1 m
又(1+
)m=1+1 m-2
•C 1m
+>1+1 m-2
>2>m m-2
∴1+3 2
>(1 m-2
)3 2 1 m
则
>1,则f(n)为递减数列.f(n) f(n+1)
当m=n时,f(n)>f(n+1)
∴当m≥n≥2时,f(n)递减数列.
∴f(x)max=f(2)=(
)9 4
(m-1),故只需证(1 m
)9 4
(m-1)≤1 m m2-1 m
要证:(m-n+1)(
)3 2
≤n m
即证m2-1 m
≤(9 4
)m=(1+m+1 m
)m,而m≥2时,(1+1 m
)m≥1 m
+C 0m
•C 1m
+1 m
•C 0m
=2+1 m2
•1 m2 m(m-1) 2
=2+
=2+m-1 2m
-1 2
≥2+1 2m
-1 2
=1 2×2 9 4
故原不等式成立.