问题
解答题
已知函数f(x)=
(1)求f(x)的极值; (2)若关于x的不等式
(3)证明:
|
答案
(1)f′(x)=
,令f'(x)=0,得x=ea,当x∈(0,ea)时,f'(x)>0a-lnx x2
函数f(x)为增函数,当x∈(ea,+∞)时,f'(x)<0,函数f(x)为减函数,
故f(x)有极大值为f(ea)=e-a,(5分)
(2)由(1)知f(x)≤
,令a=1,1 ea
则
≤lnx x
,1 e
故只需
≥-1,所以得-1<k≤1(10分)-2k k+1
(3)由(1)知f(x)≤e-a,令a=0,则有lnx≤x-1,
∵n∈N,n≥2∴lnn2≤n2-1,
∴
≤lnn2 n2
=1-n2-1 n2
,1 n2
故
+ln22 22
++ln32 32
≤(1-lnn2 n2
)+(1-1 22
)++(1-1 32
)1 n2
=(n-1)-(
+1 22
++1 32
)<(n-1)-(1 n2
-1 2
+1 3
-1 3
++1 4
-1 n
)1 n+1
=(n-1)-(
-1 2
)=1 n+1
(14分)2n2-n-1 2(n+1)