问题 解答题
已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.
答案

(1)∵f(

x1+x2
2
)-
f(x1)+f(x2)
2

=a(

x1+x2
2
)2+b(
x1+x2
2
)+c-
ax12+bx1+c+ax22+bx2+c
2

=-

a
4
(x1-x2)2<0,

∵x1≠x2,∴a>0.∴实数a的取值范围为(0,+∞).

(2)∵f(x)=ax2+4x-2=a(x+

2
a
)2-2-
4
a

显然f(0)=-2,对称轴x=-

2
a
<0.

①当-2-

4
a
<-4,即0<a<2时,M(a)∈(-
2
a
,0)
,且f[M(a)]=-4.

令ax2+4x-2=-4,解得x=

-2±
4-2a
a

此时M(a)取较大的根,即M(a)=

-2+
4-2a
a
=
-2
4-2a
+2

∵0<a<2,∴M(a)=

-2
4-2a
+2
>-1.

②当-2-

4
a
≥-4,即a≥2时,M(a)<-
2
a
,且f[M(a)]=4.

令ax2+4x-2=4,解得x=

-2±
4+6a
a

此时M(a)取较小的根,即M(a)=

-2-
4+6a
a
=
-6
4+6a
-2

∵a≥2,∴M(a)=

-6
4+6a
-2
≥-3.当且仅当a=2时,取等号.

∵-3<-1∴当a=2时,M(a)取得最小值-3.

多项选择题
单项选择题