问题
解答题
已知数列{an}是首项为a1=
(1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn. |
答案
(1)由题意知,an=(
)n(n∈N*)1 4
∵bn=3log
an-2,b1=3log1 4
a1-2=11 4
∴bn+1-bn=3log
an+1-3log1 4
an=3log1 4 1 4
=3logan+1 an
q=31 4
∴数列{bn}是首项b1=1,公差d=3的等差数列(7分)
(2)由(1)知,an=(
)n,bn=3n-2(n∈N*)1 4
∴cn=(3n-2)×(
)n,(n∈N*)1 4
∴Sn=1×
+4×(1 4
)2+7×(1 4
)3++(3n-5)×(1 4
)n-1+(3n-2)×(1 4
)n,1 4
于是
Sn=1×(1 4
)2+4×(1 4
)3+7×(1 4
)4++(3n-5)×(1 4
)n+(3n-2)×(1 4
)n+11 4
两式相减得
Sn=3 4
+3[(1 4
)2+(1 4
)3++(1 4
)n]-(3n-2)×(1 4
)n+1=1 4
-(3n+2)×(1 2
)n+1.1 4
∴Sn=
-2 3
×(12n+8 3
)n+1(n∈N*)(14分)1 4