问题
解答题
已知数列{an}满足an+1=2an+2n+2-1,a1=3, (1)求证:数列{
(2)求数列{an}的前n项的和Sn; (3)令
|
答案
(1)an+1=2an+2n+2-1⇒an+1-1=2(an-1)+2n+2⇒
=an+1-1 2n+1
+2,an-1 2n
∴{
}是公差为2,首项为1的等差数列an-1 2n
(2)由(1)知:
=2n-1,an-1 2n
∴an=(2n-1)•2n+1Sn=1×2+3×22+5×23+…+(2n-1)×2n+n
令An=1×2+3×22+5×23+…+(2n-1)×2n①
①×2得:2An=1×22+3×23+5×24+…+(2n-1)×2n+1②
②-①得:An=-2-23-24-…-2n+1+(2n-1)•2n+1=6+(2n-3)•2n+1
∴Sn=n+6+(2n-3)•2n+1
(3)∵
=1 bn-1
=2n-1an-1 2n
∴bn=
,2n 2n-1
∵Tn=b1b2b3•…•bn
当n=1时,T1=b1=2>
不等式成立2×1+1
假设n=k(k∈N*)不等式b1•…•bk>
成立,2k+1
则当n=k+1时,有b1•…•bk•bk+1>
•2k+1
=2k+2 2k+1 2k+2 2k+1
∵
=2k+2 2k+1
>4k2+8k+4 2k+1
=4k2+8k+3 2k+1
=(2k+1)(2k+3) 2k+1 2k+3
∴b1•…•bk+1>
即当n=k+1时不等式也成立.综上,当n∈N*时,原不等式成立.2(k+1)+1