问题 解答题
已知数列{an}满足an+1=2an+2n+2-1,a1=3,
(1)求证:数列{
an-1
2n
}
为等差数列;
(2)求数列{an}的前n项的和Sn
(3)令
1
bn-1
=
an-1
2n
,Tn为数列{bn}的前n项的积,求证:Tn
2n+1
答案

(1)an+1=2an+2n+2-1an+1-1=2(an-1)+2n+2

an+1-1
2n+1
=
an-1
2n
+2,

{

an-1
2n
}是公差为2,首项为1的等差数列

(2)由(1)知:

an-1
2n
=2n-1,

an=(2n-1)•2n+1Sn=1×2+3×22+5×23+…+(2n-1)×2n+n

An=1×2+3×22+5×23+…+(2n-1)×2n

①×2得:2An=1×22+3×23+5×24+…+(2n-1)×2n+1

②-①得:An=-2-23-24-…-2n+1+(2n-1)•2n+1=6+(2n-3)•2n+1

Sn=n+6+(2n-3)•2n+1

(3)∵

1
bn-1
=
an-1
2n
=2n-1

bn=

2n
2n-1

∵Tn=b1b2b3•…•bn

当n=1时,T1=b1=2>

2×1+1
不等式成立

假设n=k(k∈N*)不等式b1•…•bk

2k+1
成立,

则当n=k+1时,有b1•…•bkbk+1

2k+1
2k+2
2k+1
=
2k+2
2k+1

2k+2
2k+1
=
4k2+8k+4
2k+1
4k2+8k+3
2k+1
=
(2k+1)(2k+3)
2k+1
=
2k+3

b1•…•bk+1

2(k+1)+1
即当n=k+1时不等式也成立.综上,当n∈N*时,原不等式成立.

多项选择题
填空题