问题 解答题
已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.
(Ⅰ)求t的值及数列{an}的通项公式;
(Ⅱ)设bn=
2n+1
an
,求数列{bn}的前n项和Tn
答案

(Ⅰ)当n=1时,S1=t(S1-a1+1),所以a1=t,

当n≥2时,Sn=t(Sn-an+1)①

Sn-1=t(Sn-1-an-1+1),②

①-②,得an=t•an-1,即

an
an-1
=t.

故{an}是首项a1=t,公比等于t的等比数列,所以an=tn,…(4分)

a2=t2a3=t3

由4a3是a1与2a2的等差中项,可得8a3=a1+2a2,即8t3=t+2t2

因t>0,整理得8t2-2t-1=0,解得t=

1
2
或t=-
1
4
(舍去),

所以t=

1
2
,故an=
1
2n
.…(6分)

(Ⅱ)由(Ⅰ),得bn=

2n+1
an
=(2n+1)×2n

所以Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)×2n,③

2Tn=3×22+5×23+7×24+…+(2n-1)×2n+(2n+1)×2n+1,④

③-④,得-Tn=3×2+2(22+23+…+2n)-(2n+1)×2n+1      …(8分)

=-2+2n+2-(2n+1)×2n+1=-2-(2n-1)×2n+1…(11分)

所以Tn=2+(2n-1)×2n+1.…(12分)

填空题
单项选择题