问题
解答题
设f(logax)=
求证: (1)过函数y=f(x)图象上任意两点直线的斜率恒大于0; (2)f(3)>3. |
答案
证明:(1)令t=logax,则x=at,f(t)=
(at-a-t)(t∈R),a a2-1
∴f(x)=
(ax-a-x)(x∈R),a a2-1
设x1<x2,f(x1)-f(x2)=
,a(ax1-ax2)(ax1+x2+1) (a2-1)ax1+x2
(1)当a>1时,因为x10,ax1-ax2<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
(2)当0<a<1时,因为a2-1<0,ax1-ax2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
∴x1<x2时,恒有f(x1)<f(x2),∴K=
>0,f(x1)-f(x2) x1-x2
故过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)=
(a3-a-3)=a a2-1
=a(a6-1) a3(a2-1)
=a2+a4+a2+1 a2
+1≥21 a2
+1=3,a2• 1 a2
∵a>0,a≠1,∴a2≠
,∴上述不等式不能取等号,1 a2
∴f(3)>3.