问题 解答题
设f(logax)=
a(x2-1)
x(a2-1)
,(a>0,a≠1)

求证:
(1)过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)>3.
答案

证明:(1)令t=logax,则x=at,f(t)=

a
a2-1
(at-a-t)(t∈R),

∴f(x)=

a
a2-1
(ax-a-x)(x∈R),

设x1<x2,f(x1)-f(x2)=

a(ax1-ax2)(ax1+x2+1)
(a2-1)ax1+x2

(1)当a>1时,因为x10,ax1-ax2<0

所以f(x1)-f(x2)<0,即f(x1)<f(x2),

∴f(x)在(-∞,+∞)上单调递增;

(2)当0<a<1时,因为a2-1<0,ax1-ax2>0,

所以f(x1)-f(x2)<0,即f(x1)<f(x2),

∴f(x)在(-∞,+∞)上单调递增;

∴x1<x2时,恒有f(x1)<f(x2),∴K=

f(x1)-f(x2)
x1-x2
>0,

故过函数y=f(x)图象上任意两点直线的斜率恒大于0;

(2)f(3)=

a
a2-1
(a3-a-3)=
a(a6-1)
a3(a2-1)
=
a4+a2+1
a2
=a2+
1
a2
+1≥2
a2
1
a2
+1=3,

∵a>0,a≠1,∴a2

1
a2
,∴上述不等式不能取等号,

∴f(3)>3.

单项选择题 A1/A2型题
填空题