问题 填空题
有以下四个命题:
①f(x)=
1
x
在[0,1]上连续;
②若f(x)是(a,b)内的连续函数,则f(x)在(a,b)内有最大值和最小值;
lim
x→
π
2
2sin2x
cosx
=4;
④若f(x)=
x
(x≥0)
x+1(x<0).
lim
x→0
f(x)=0.
其中正确命题的序号是______.(请把你认为正确命题的序号都填上)
答案

①f(x)=

1
x
的定义域是{x|x≠0},故①不正确;

②如函数f(x)=x在区间(1,2)上连续,但是既没有最大值也没有最小值;故②不正确;

lim
x→
π
2
2sin2x
cosx
=
lim
x→
π
2
4cos2x
-sinx
=4
cos2×
π
2
-sin
π
2
=4,故③正确;

lim
x→x0+
f(x)=0,
lim
x→x0-
f(x)=0+1=1

lim
x→0
f(x)不存在.

故答案为③.

单项选择题
单项选择题