问题
问答题
证明:当x>0时,(x2-1)lnx≥2(x-1)2.
答案
参考答案:[证明] 注意到当x=1时原不等式两端相等,而当x>l时原不等式[*],当0<x<1时原不等式[*],故作辅助函数
[*]
有F(1)=0,求导数可得
[*]
从而,当0<x<1时由F(x)单调增加得F(x)<F(1)=0,当x>1时由F(x)单调增加得F(x)>F(1)=0,即要证的不等式成立.