问题 解答题
设f(x)=
ax2+bx+1
x+c
(a>0)为奇函数,且|f(x)|min=2
2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1

(1)求f(x)的解析表达式;
(2)证明:当n∈N+时,有bn(
1
3
)n
答案

由f(x)是奇函数,得b=c=0,

由|f(x)min|=2

2
,得a=2,故f(x)=
2x2+1
x

(2)an+1=

f(an)-an
2
=
2
a2n
+1
a n
-an
2
=
a2n
+1
2an

bn+1=

an+1-1
an+1+1
=
a2n
+1
2an
-1
a2n
+1
2an
+1
=
a2n
-2an+1
a2n
+2an+1
=(
an-1
an+1
)2
=bn2

∴bn=bn-12=bn-24

b2n-11
,而b1=
1
3

∴bn=(

1
3
)2n-1

当n=1时,b1=

1
3
,命题成立,

当n≥2时∵2n-1=(1+1)n-1=1+Cn-11+Cn-12++Cn-1n-1≥1+Cn-11=n

(

1
3
)2n-1(
1
3
)n
,即bn(
1
3
)n

单项选择题
问答题 简答题