问题 解答题
已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
1
2
)=-
1
2
,令bn=
2n
f(2n)
Sn
表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
答案

(1)令a=b=0,得f(0)=0•f(0)+0•f(0)=0.

令a=b=1,得f(1)=1•f(1)+1•f(1),∴f(1)=0.(2分)

(2)令a=b=-1,得f(1)=f[(-1)•(-1)]=-f(-1)-f(-1)=-2f(-1),∴f(-1)=0.

令a=-1,b=x,得f(-x)=f(-1•x)=-1•f(x)+x•f(-1)=-f(x)+0=-f(x).∴f(x)是奇函数.(5分)

(3)当ab≠0时,

f(a•b)
a•b
=
f(b)
b
+
f(a)
a

g(x)=

f(x)
x
,则g(a•b)=g(a)+g(b),∴g(an)=ng(a).(7分)

∴f(an)=an•g(an)=n•an•g(a)=n•an-1•f(a).

f(1)=f(2•

1
2
)=2f(
1
2
)+
1
2
f(2)=0,f(
1
2
)=-
1
2

∴f(2)=2,

bn=

2n
f(2n)
=
1
n
(9分)

Sn=1+

1
2
+
1
3
+…+
1
n

Sn-Sn-1=

1
n
(n≥2)

即nSn-(n-1)Sn-1=Sn-1+1,(11分)

∴(n-1)Sn-1-(n-2)Sn-2=Sn-2+1,…,2S2-S1=S1+1,

∴nSn-S1=S1+S2+…+Sn-1+n-1,

∴S1+S2+…Sn-1=nSn-n=(Sn-1)•n(n≥2)

∴g(n)=n.

故存在关于n的整式g (n)=n,使等式对于一切不小于2的自然数n恒成立     (13分)

单项选择题
单项选择题