问题 解答题

已知:函数f(x)=x2+4x+3 (x∈R),g(x)与f(x)图象关于直线x=1对称.

(1)求g(x);

(2)如果关于x的不等式 g(x)≥g(a)-4的解集为全体实数,求a的最大值.

答案

(1)设P(x,y)为y=g(x)上任一点,(1分)

∵y=g(x)与y=f(x)关于x=1对称,

∴P(x,y)关于x=1的对称点P′(2-x,y)在y=f(x)的图象上,(3分)

∵f(x)=x2+4x+3

∴y=(2-x)2+(2-x)+3=x2-8x+15

即g(x)=x2-8x+15(2分)

(2)解法一:由关于x的不等式 g(x)≥g(a)-4的解集为全体实数,

又因为g(x)的最小值为-1(2分)

即:g(a)-4≤-1(3分)

a2-8a+15-4≤-1

a2-8a+12≤0

2≤a≤6(2分)

a的最大值6(1分)

解法二:由g(x)≥g(a)-4

得:x2-8x+15≥a2-8a+15-4(1分)

x2-8x-(a2-8a-4)≥0(1分)

因为不等式的解集为全体实数

即:△=64-4(a2-8a-4)≤0(3分)

a2-8a+12≤0(1分)

2≤a≤6(1分)

a的最大值6(1分)

选择题
单项选择题