问题 选择题
设函数f(x)定义在R上,f(x+1)=f(1-x),且满足x≥1,f(x)=lnx,则(  )
A.f(
1
3
)<f(2)<f(
1
2
B.f(
1
2
)<f(2)<f(
1
3
C.f(
1
2
)<f(
1
3
)<f(2)
D.f(2)<f(
1
2
)<f(
1
3
答案

由f(x+1)=f(1-x),得f(

1
2
)=f(1-
1
2
)=f(1+
1
2
)=f(
3
2
),f(
1
3
)=f(1-
2
3
)=f(1+
2
3
)=f(
5
3
),

因为x≥1时,f(x)=lnx,且1<

3
2
5
3
<2,所以f(
3
2
)=ln
3
2
,f(
5
3
)=ln
5
3
,f(2)=ln2,

又f(x)=lnx在定义域内递增,1<

3
2
5
3
<2,

所以f(

3
2
)<f(
5
3
)<f(2),即f(
1
2
)<f(
1
3
)<f(2),

故选C.

单项选择题
单项选择题