问题
解答题
已知函数f (x)=x3-3ax+1,a∈R. (Ⅰ) 求f (x)的单调区间; (Ⅱ) 求所有的实数a,使得不等式-1≤f (x)≤1对x∈[0,
|
答案
(I)∵f (x)=x3-3ax+1,
∴f′(x)=3x2-3a,
当a≤0时,f′(x)≥0恒成立,f (x)的单调增区间为R;
当a>0时,由f′(x)>0得x<-
或x>a a
故f (x)的单调增区间为(-∞,-
)和(a
,+∞),f (x)的单调减区间为(-a
,a
)a
(II)当a≤0时,由(I)可知f (x)在[0,
]递增,且f(0)=1,此时无解;3
当0<a<3时,由(I)可知f (x)在∈[0,-
)上递减,在(a
,a
]递增,3
∴f (x)在[0,
]的最小值为f(3
)=1-2aa a
∴
,即f(
)≥1a f(
)≤13 f(0)≤1 a
≤1a a≥1
解得:a=1
当a≥3时,由(I)可知f (x)在[0,
]上递减,且f(0)=1,3
∴f(
)=33
-33
a+1≥-13
解得:a≤1+2 3 9
此时无解
综上a=1