问题 问答题 论述题

论述东方古代数学和西方古代数学各自的主要特征、对现代数学的影响,及其对数学教育的启示。

答案

参考答案:

古希腊数学的三个阶段:古典时期的希腊数学----哲学盛行、学派林立、名家百出;

亚历山大学派时期----希腊数学顶峰时期,代表人物:欧几里得,阿基米德,阿波罗尼奥斯;希腊数学的衰落----罗马帝国的建立,唯理的希腊文明被务实的罗马文明代替。

A.古希腊数学与哲学的交织:古希腊早期的自然科学往往是与哲学交织在一起的,古希腊的自然哲学乃是古代自然科学的一种特殊形态,虽然有许多错误的东西,但也有不少合理的知识和包含着合理成分的猜测。

恩格斯说:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚胎、萌芽。因此,如果理论自然科学想要追溯自己今天的一般原理发生和发展的历史,它就不得不回到希腊人那里去。”

B.与希腊数学相比,中世纪的东方数学表现出强烈的算法精神,特别是中国与印度数学,着重算法的概括,不讲究命题的数学推导。所谓“算法”,不只是单纯的计算,而是为了解决一整类实际或科学问题而概括出来的、带一般性的计算方法。

C.算法倾向本来是古代河谷文明的传统,但在中世纪却有了质的提高。这一时期中国与印度的数学家们创造的大量结构复杂、应用广泛的算法,很难再仅仅被看作是简单的经验法则,它们是一种归纳思维能力的产物。

D.这种能力与欧几里得几何的演绎风格迥然不同却又相辅相成。东方数学在文艺复兴以前通过阿拉伯人传播到欧洲,与希腊式的数学交汇结合,孕育了近代数学的诞生。

E.就繁荣时期而言,中国数学在上述三个地区是延续最长的。从公元前后至公元14世纪,先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期以及宋元时期,其中宋元时期达到了中国古典数学的顶峰。

单项选择题 案例分析题
单项选择题