问题
解答题
已知函数f(x)=log2
(1)判断函数f(x)的奇偶性; (2)求证f(x1)+f(x2)=f(
(3)若f(
|
答案
(1)由
>0得函数f(x)的定义域为{x|-1<x<1},1+x 1-x
又f(x)+f(-x)=log2
+log21+x 1-x
=01-x 1+x
所以函数f(x)为奇函数
(2)证明:f(x1)+f(x2)=log2
+log21+x1 1-x1
=log2(1+x2 1-x2
•1+x1 1-x1
)=log21+x2 1-x2
f(1+x1+x2+x1x2 1-x1-x2+x1x2
)=log2x1+x2 1+x1x2
=log21+ x1+x2 1+x1x2 1- x1+x2 x1x2
;1+x1+x2+x1x2 1-x1-x2+x1x2
∴f(x1)+f(x2)=f(
);x1+x2 1+x1x2
(3)由(2)的结论知f(a)+f(b)=f(
)=1a+b 1+ab
又由(1)知f(b)=-f(-b)=-
;1 2
∴f(a)=1-f(b)=1+
=1 2
.3 2