问题 解答题
已知数列{an}满足a1=2,a2=1,且
an-1-an
anan-1
=
an-an+1
anan+1
(n≥2)
bn=
2n
an

(1)证明:
1
an
-
1
an-1
=
1
2

(2)求数列{bn}的前n项和Sn
答案

(1)∵

an-1-an
anan-1
=
an-an+1
anan+1
(n≥2)

∴数列{

an-1-an
anan-1
}为常数列

an-1-an
anan-1
=
1
an
-
1
an-1
=
a1-a2
a2a1
=
1
2
  (n≥2)

1
an
-
1
an-1
=
1
2

(2)由(1)知{

1
an
}是以
1
2
为首项,
1
2
为公差的等差数列,

1
an
=
n
2

bn=

2n
an
=n×2n-1

∴Sn=1×20+2×21+3×22+…+n×2n-1

2Sn=1×21+2×22+…+(n-1)×2n-1+n×2n

-Sn=1+21+22+…+2n-1-n×2n=

1-2n
1-2
-n×2n=(1-n)2n-1,

∴Sn=(n-1)2n+1.

多项选择题
单项选择题