问题 解答题
已知函数f(x)=
10x-10-x
10x+10-x
,判断f(x)的奇偶性和单调性.
答案

(1)已知函数f(x)=

10x-10-x
10x+10-x
=
102x-1
102x+1
,x∈R

f(x)=

10-x-10x
10-x+10x
=-
102x-1
102x+1
=-f(x),x∈R

∴f(x)是奇函数

(2)f(x)=

102x-1
102x+1
,x∈R,设x1,x2∈(-∞,+∞),且x1<x2

f(x1) -f(x2) =

102x1-1
102x1+1
-
102x2-1
102x2+1
=
2(102x1-102x2)
(102x1+1)(102x2+1)
=
2(100x1-100x2)
(102x1+1)(102x2+1)

因为x1<x2,所以100x1100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),

∴f(x)为增函数.

单项选择题
单项选择题