已知,数列{an}有a1=a,a2=2,对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
(1)求a的值; (2)求证数列{an}是等差数列; (3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且
|
(1)由已知,得s1=
=a1=a,∴a=0…(4分)1•(a-a) 2
(2)由a1=0得Sn=
,则Sn+1=nan 2
,(n+1)an+1 2
∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan,
于是有(n-1)an+1=nan,并且有nan+2=(n+1)an+1,
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an),
而n是正整数,则对任意n∈N都有an+2-an+1=an+1-an,
∴数列{an}是等差数列,其通项公式是an=2(n-1).…(10分)
(3)∵Sn=
=n(n-1)∴pn=n(n-1)•2 2
+(n+2)(n+1) (n+1)n
=2+(n+1)n (n+2)(n+1)
-2 n 2 n+2
∴p1+p2+p3+…+pn-2n=(2+
-2 1
)+(2+2 3
-2 2
)+…+(2+2 4
-2 n
)-2n=2+1-2 n+2
-2 n+1
;由n是正整数可得p1+p2+…+pn-2n<3,2 n+2
并且有
(p1+p2+…+pn-2n)=3,lim n→∞
∴数列{p1+p2+…+pn-2n}的“上渐进值”等于3.…(18分)