问题
选择题
等差数列{an}中,a3=8,a7=20,若数列{
|
答案
设等差数列的首项为a,公差为d,
因为a3=8,a7=20,所以a+2d=8,a+6d=20,解得a=3,a=2.an=3n-1;
又因为
=1 an•an+1
=1 (3n-1)(3n+2)
(1 3
-1 3n-1
),1 3n+2
所以Sn=
(1 3
-1 2
+1 5
-1 5
+1 8
-1 8
+…+1 11
-1 3n-1
)1 3n+1
=
(1 3
-1 2
)=25,解得n=161 3n+1
故选C