问题 解答题
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(I)求数列{an}的通项公式;
(II)若数列{bn}滿足4b1-14b2-14bn-1=(an+1)bn(n∈N*),证明:数列{bn}是等差数列;
(Ⅲ)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
答案

(I)∵an+1=2an+1(n∈N*),

∴an+1+1=2(an+1),

∴{an+1}是以a1+1=2为首项,2为公比的等比数列.

∴an+1=2n

即an=2n-1∈N*).

(II)证明:∵4b1-14b2-14bn-1=(an+1)bn(n∈N*)

4(b1+b2+…+bn)-n=2nbn

∴2[(b1+b2+…+bn)-n]=nbn,①

2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②

②-①,得2(bn+1-1)=(n+1)bn+1-nbn

即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.

③-④,得nbn+2-2nbn+1+nbn=0,

即bn+2-2bn+1+bn=0,

∴bn+2-bn+1=bn+1-bn(n∈N*),

∴{bn}是等差数列.

(III)证明:∵

ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,,n,

a1
a2
+
a2
a3
++
an
an+1
n
2

ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
1
2
-
1
3
.
1
2k
,k=1,2,,n,

a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3

n
2
-
1
3
a1
a2
+
a2
a3
++
an
an+1
n
2
(n∈N*).

填空题
单项选择题