已知数列{an}满足a1=1,an+1=2an+1(n∈N*). (I)求数列{an}的通项公式; (II)若数列{bn}滿足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明:数列{bn}是等差数列; (Ⅲ)证明:
|
(I)∵an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n.
即an=2n-1∈N*).
(II)证明:∵4b1-14b2-1…4bn-1=(an+1)bn(n∈N*)
∴4(b1+b2+…+bn)-n=2nbn.
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
(III)证明:∵
=ak ak+1
=2k-1 2k+1-1
<2k-1 2(2k-
)1 2
,k=1,2,,n,1 2
∴
+a1 a2
++a2 a3
<an an+1
.n 2
∵
=ak ak+1
=2k-1 2k+1-1
-1 2
=1 2(2k+1-1)
-1 2
≥1 3.2k+2k-2
-1 2
.1 3
,k=1,2,,n,1 2k
∴
+a1 a2
++a2 a3
≥an an+1
-n 2
(1 3
+1 2
++1 22
)=1 2n
-n 2
(1-1 3
)>1 2n
-n 2
,1 3
∴
-n 2
<1 3
+a1 a2
++a2 a3
<an an+1
(n∈N*).n 2