问题
解答题
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*). (I)证明:数列{
(II)求数列{an-1}的前n项和Sn. |
答案
(I)证明:∵a1=5且an=2an-1+2n-1(n≥2且n∈N*)
∴an-1=2(an-1-1)+2n
∴
=an-1 2n 2(an-1-1)+2n 2n
∴
-an-1 2n
=1an-1-1 2n-1
∵
=2a1-1 2
∴数列{
}是以2为首项,以1为公差的等差数列an-1 2n
(II)由(I)可得,
=2+(n-1)=n+1an-1 2n
∴an-1=(n+1)•2n
∴Sn=2•21+3•22+…+(n+1)•2n
2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1
两式相减可得,-Sn=4+22+23+…+2n-(n+1)•2n+1
=4+
-(n+1)•2n+14(1-2n-1) 1-2
=4+2n+1-4-(n+1)•2n+1
∴Sn=n•2n+1