问题 解答题
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(I)证明:数列{
an-1
2n
}
为等差数列;
(II)求数列{an-1}的前n项和Sn
答案

(I)证明:∵a1=5且an=2an-1+2n-1(n≥2且n∈N*

an-1=2(an-1-1)+2n

an-1
2n
=
2(an-1-1)+2n
2n

an-1
2n
-
an-1-1
2n-1
=1

a1-1
2
=2

∴数列{

an-1
2n
}是以2为首项,以1为公差的等差数列

(II)由(I)可得,

an-1
2n
=2+(n-1)=n+1

∴an-1=(n+1)•2n

∴Sn=2•21+3•22+…+(n+1)•2n

 2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1

两式相减可得,-Sn=4+22+23+…+2n-(n+1)•2n+1

=4+

4(1-2n-1)
1-2
-(n+1)•2n+1

=4+2n+1-4-(n+1)•2n+1

Sn=n•2n+1

单项选择题
单项选择题