问题
解答题
已知函数f(x)=log2(x2+1)(x≥0),g(x)=
(1)试求函数f(x)的反函数f-1(x); (2)函数h(x)=f-1(x)+g(x),求h(x)的定义域,并判断函数h(x)的增减性; (3)(理)若(2)中函数h(x),有h(x)≥2在定义域内恒成立,求a的范围. (文)若(2)中函数h(x)的最小值为3,试求a的值. |
答案
(1)令y=f(x)=log2(x2+1)(x≥0),
∴x2+1=2y即x=
(y≥0)2y-1
∴f-1(x)=
(x≥0).2x-1
(2)h(x)=f-1(x)+g(x)=
+2x-1
,a<0时,定义域为[0,+∞);a≥0时,定义域为[a,+∞);x-a
此函数在定义域内单调递增(∵f-1(x)与g(x)在公共定义域内均为增函数,∴它们的和也为增函数).
(3)(理)当a≥0时,由h(x)min=h(a)=
≥2⇒a≥log25.2a-1
当a<0时,由h(x)min=h(0)=
≥2⇒a≤-4.∴a的取值范围是(-∞,-4]∪[log25,+∞).-a
(文)当a≥0时,由h(x)min=h(a)=
=3⇒log210;2a-1
当a<0时,由h(x)min=h(0)=
=3⇒a=-9.∴所求的a的值为a=log210或a=-9.-a