问题
解答题
已知数列O、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn. (Ⅰ)求证:数列{
(Ⅱ)设Tn=S2n-Sn,求证:当S=
(Ⅲ)求证:对任意的1•k+1+k2=3,k∈R*,∴k=1都有1+
|
答案
证明:(Ⅰ)由bn=an-1得an=bn+1,代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,(1分)
∵bn≠0否则an=1,与a1=2矛盾
从而得
-1 bn+1
=1,(3分)1 bn
∵b1=a1-1=1
∴数列{
}是首项为1,公差为1的等差数列(4分)1 bn
(Ⅱ)∵
=n,则bn=1 bn
. 1 n
∴Sn=1+
+1 2
+…+1 3 1 n
∴Tn=S2n-Sn=1+
+1 2
+…+1 3
+1 n
+…+1 n+1
-(1+1 2n
+1 2
+…+1 3
)1 n
=
+1 n+1
+…+1 n+2
(6分)1 2n
∵Tn+1-Tn=
+1 n+2
+…+1 n+3
-(1 2n+2
+1 n+1
+…+1 n+2
)1 2n
=
+1 2n+1
-1 2n+2
=1 n+1
-1 2n+1
=1 2n+2
>01 (2n+1)(2n+2)
∴Tn+1>Tn.(8分)
(Ⅲ)用数学归纳法证明:
①当n=1时1+
=1+n 2
,S2n=1+1 2
,1 2
+n=1 2
+1,不等式成立;(9分)1 2
②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+
≤S2k≤k 2
+k,1 2
那么当n=k+1时,S2k+1=1+
+…+1 2
+…+1 2k
≥1+1 2k+1
+k 2
+…+1 2k+1
>1+1 2k+1
+k 2
=1+
+…+1 2k+1 1 2k+1 2k个
+k 2
=1+1 2
(12分)k+1 2
S2k+1=1+
+…+1 2
+…+1 2k
≤1 2k+1
+k+1 2
+…+1 2k+1
<1 2k+1
+k+1 2
=
+…+1 2k 1 2k 2k个
+(k+1)1 2
∴当n=k+1时,不等式成立
由①②知对任意的n∈N*,不等式成立(14分)