问题 解答题
已知数列O、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn
(Ⅰ)求证:数列{
1
bn
}
为等差数列;
(Ⅱ)设Tn=S2n-Sn,求证:当S=
1
2
+
1
4
+
1
6
+…+
1
20
,Tn+1>Tn
(Ⅲ)求证:对任意的1•k+1+k2=3,k∈R*,∴k=1都有1+
n
2
S2n
1
2
+n
成立.
答案

证明:(Ⅰ)由bn=an-1得an=bn+1,代入an-1=an(an+1-1)得bn=(bn+1)bn+1

整理得bn-bn+1=bnbn+1,(1分)

∵bn≠0否则an=1,与a1=2矛盾

从而得

1
bn+1
-
1
bn
=1,(3分)

∵b1=a1-1=1

∴数列{

1
bn
}是首项为1,公差为1的等差数列(4分)

(Ⅱ)∵

1
bn
=n,则bn=
1
n

Sn=1+

1
2
+
1
3
+…+
1
n

∴Tn=S2n-Sn=1+

1
2
+
1
3
+…+
1
n
+
1
n+1
+…+
1
2n
-(1+
1
2
+
1
3
+…+
1
n
)

=

1
n+1
+
1
n+2
+…+
1
2n
(6分)

Tn+1-Tn=

1
n+2
+
1
n+3
+…+
1
2n+2
-(
1
n+1
+
1
n+2
+…+
1
2n
)

=

1
2n+1
+
1
2n+2
-
1
n+1
=
1
2n+1
-
1
2n+2
=
1
(2n+1)(2n+2)
>0

∴Tn+1>Tn.(8分)

(Ⅲ)用数学归纳法证明:

①当n=1时1+

n
2
=1+
1
2
S2n=1+
1
2
1
2
+n=
1
2
+1,不等式成立;(9分)

②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+

k
2
S2k
1
2
+k,

那么当n=k+1时,S2k+1=1+

1
2
+…+
1
2k
+…+
1
2k+1
≥1+
k
2
+
1
2k+1
+…+
1
2k+1
>1+
k
2
+
1
2k+1
+…+
1
2k+1
2k
=1+
k
2
+
1
2
=1+
k+1
2
(12分)

S2k+1=1+

1
2
+…+
1
2k
+…+
1
2k+1
1
2
+k+
1
2k+1
+…+
1
2k+1
1
2
+k+
1
2k
+…+
1
2k
2k
=
1
2
+(k+1)

∴当n=k+1时,不等式成立

由①②知对任意的n∈N*,不等式成立(14分)

填空题
单项选择题