问题
解答题
数列{an}满足a1=
(1)证明:数列{
(2)求数列{an}的通项公式.并证明数列{an}是单调递增数列. |
答案
(1)∵
-1 an+1-1
=1 an-1
-1
-11 2-an
=1 an-1
-2-an -1+an
=1 an-1
=-1,-an+1 an-1
而
=-2,1 a1-1
∴数列{
}是首项为-2,公差为-1的等差数列.1 an-1
(2)由(1)得
=-n-1,1 an-1
∴an=
.n n+1
∵an+1-an=
-n+1 n+2
=n n+1
=(n2+2n+1)-(n2+2n) (n+2)(n+1)
>0,1 (n+2)(n+1)
∴an+1>an,
∴数列{an}是单调递增数列.