已知函数{an}满足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t为常数且t≠0). (I)求证:数列{
(II)求数列{an}的通项公式; (III)设bn=n•2nan,求数列{bn}的前n项和Sn. |
(I) 证明:(1)∵t2-2tan-1+an-1an=0,∴(t2-tan-1)-(tan-1-an-1an)=0,即 t(t-an-1)=an-1(t-an).
∵t-an-1≠0,∴
=1 an- t
,即an-1 t(an-1-t)
=1 an- t
=an-1-t+t t(an-1-t)
+1 t
,t t(an-1-t)
∴
-1 an- t
=1 an-1-t
(为常数),∴数列{1 t
}为等差数列.1 an-t
(II)由上可得数列{
}为等差数列.公差为1 an-t
,∴1 t
=1 an- t
+(n-1)1 a1- t
=1 t
.n t
∴an =
+t.t n
(3)∵bn=n•2nan=(n+1)t2n,
∴sn=t[2×21+3×22+…+(n+1)2n]①.
∴2sn=t[2×22+3×23+…+n 2n+(n+1)2n+1]②.
①-②可得-sn=t[[2×21+22+23+…+2n-(n+1)2n+1]=[2+( 2n+1-2)-(n+1)2n+1]=-n 2n+1,
∴sn=n 2n+1.