问题 解答题
已知函数{an}满足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t为常数且t≠0).
(I)求证:数列{
1
an-t
}
为等差数列;
(II)求数列{an}的通项公式;
(III)设bn=n•2nan,求数列{bn}的前n项和Sn
答案

(I) 证明:(1)∵t2-2tan-1+an-1an=0,∴(t2-tan-1)-(tan-1-an-1an)=0,即 t(t-an-1)=an-1(t-an).

∵t-an-1≠0,∴

1
an- t
=
an-1
t(an-1-t)
,即
1
an- t
=
an-1-t+t
t(an-1-t)
=
1
t
+
t
t(an-1-t)

1
an- t
-
1
an-1-t
=
1
t
 (为常数),∴数列{
1
an-t
}
为等差数列.

(II)由上可得数列{

1
an-t
}为等差数列.公差为
1
t
,∴
1
an- t
=
1
a1- t
+(n-1)
1
t
=
n
t

∴an =

t
n
+t.

(3)∵bn=n•2nan=(n+1)t2n

∴sn=t[2×21+3×22+…+(n+1)2n]①.

∴2sn=t[2×22+3×23+…+n 2n+(n+1)2n+1]②.

①-②可得-sn=t[[2×21+22+23+…+2n-(n+1)2n+1]=[2+( 2n+1-2)-(n+1)2n+1]=-n 2n+1

∴sn=n 2n+1

默写题
填空题