问题
解答题
设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
答案
(1)设等比数列{an}的公比为q,
则
,解得a1•q3=a1-9 2a1q2=a1q3+a1q4
,a1=1 q=-2
故数列{an}的通项公式为:an=(-2)n-1,
(2)由(1)可知an=(-2)n-1,
故Sk=
=1×[1-(-2)k-1] 1-(-2)
,1-(-2)k-1 3
所以Sk+1=
,Sk+2=1-(-2)k 3
,1-(-2)k+1 3
∴Sk+1+Sk+2=
+1-(-2)k 3
=1-(-2)k+1 3 2-(-2)k-(-2)k+1 3
=
=2-(-2)k(1-2) 3
,2+(-2)k 3
而2Sk=2
=1-(-2)k-1 3
=2-2(-2)k-1 3
=2+(-2)(-2)k-1 3
,2+(-2)k 3
故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列