已知函数f(x)=x2-2(n+1)x+n2+5n-7.
(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn.
(Ⅰ)证明:∵f(x)=x2-2(n+1)x+n2+5n-7=[x-(n+1)]2+3n-8,
∴an=3n-8,---------(2分)
∴an+1-an=3(n+1)-8-(3n-8)=3,
∴数列{an}为等差数列.---------(4分)
(Ⅱ)由题意知,bn=|an|=|3n-8|,---------(6分)
∴当1≤n≤2时,bn=8-3n,Sn=b1+…+bn=
=n(b1+bn) 2
=n[5+(8-3n)] 2
;----(8分)13n-3n2 2
当n≥3时,bn=3n-8,Sn=b1+b2+b3+…+bn=5+2+1+…+(3n-8)=7+
=(n-2)[1+(3n-8)] 2
.---------(10分)3n2-13n+28 2
∴Sn=
.---------(12分)
,1≤n≤213n-3n2 2
,n≥33n2-13n+28 2