问题
解答题
已知数列{an}满足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…,(其中t为常数且t≠0). (1)求证:数列{
(2)求数列{an}的通项公式; (3)设bn=
|
答案
证明:(1)∵t2-2tan-1+an-1an=0,
∴(t2-tan-1)-(tan-1-an-1an)=0,
即t2-tan-1=tan-1-an-1an,
∵t-an-1≠0
∴
=1 an-t
=an-1 t(an-1-t)
=an-1-t+t t(an-1-t)
+1 t 1 an-1-t
即
-1 an-t
=1 an-1-t 1 t
∴数列{
}为等差数列;1 an-t
(2)由(I)得数列{
}为等差数列,公差为1 an-t
,1 t
∴
=1 an-t
+1 a1-t
(n-1)=1 t n t
∴an=
+tt n
(3)bn=
=an (n+1)2
=(n+1)t n (n+1)2
=t•(t n(n+1)
-1 n
)1 n+1
∴Sn=b1+b2+…+bn=t[(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=t(1-1 n+1
)=1 n+1 nt n+1