设点An(xn,0),Pn(xn,2n-1)和抛物线Cn:y=x2+anx+bn(n∈N*),其中an=-2-4n-
(Ⅰ)求x2及C1的方程. (Ⅱ)证明{xn}是等差数列. |
(Ⅰ)由题意得A1(1,0),C1:y=x2-7x+b1,
设点P(x,y)是C1上任意一点,
则|A1P|=
=(x-1)2+y2 (x-1)2+(x2-7x+b1)2
令f(x)=(x-1)2+(x2-7x+b1)2
则f'(x)=2(x-1)+2(x2-7x+b1)(2x-7)
由题意得f'(x2)=0,
即2(x2-1)+2(x22-7x+b1)(2x2-7)=0
又P2(x2,2)在C1上,∴2=x22-7x2+b1
解得x2=3,b1=14
故C1的方程为y=x2-7x+14
(Ⅱ)设点P(x,y)是Cn上任意一点,
则|AnP|=
=(x-xn)2+y2 (x-xn)2+(x2+anx+bn)2
令g(x)=(x-xn)2+(x2+anx+bn)2
则g'(x)=2(x-xn)+2(x2+anx+bn)(2x+an)
由题意得g'(xn+1)=0
即2(xn+1-xn)+2(xn+12+anx+bn)(2xn+1+an)=0
又∵2n=xn+1,∴(xn+1-xn)+2n(2xn+1+an)=0(n≥1),
即(1+2n+1)xn+1-xn+2nan=0(*)
下面用数学归纳法证明xn=2n-1,
①当n=1时,x1=1,等式成立;
②假设当n=k时,等式成立,即xk=2k-1,
则当n=k+1时,由(*)知(1+2k+1)xk+1-xk+2kak=0,
又ak=2-4k-
,∴xk+1=1 2k-1
=2k+1,xk-2kak 1+2k+1
即n=k+1时,等式成立.
由①②知,等式对n∈N*成立,
故{xn}是等差数列.