问题 解答题
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
①求证:数列{lgan}是等差数列;
②设bn=
3
(lgan)(lgan+1)
求数列{bn}的前n项和Tn
答案

①当n=1时,a2=9S1+10=9×10+10=100;

当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,

可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.

∴数列{an}是以10为首项,10为公比的等比数列,

an=10×10n-1=10n

lgan+1-lgan=lg

an+1
an
=1,

∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;

②由①可得:lgan=lg10n=n,lgan+1=n+1,

bn=

3
n(n+1)
=3(
1
n
-
1
n+1
)

∴Tn=3[(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=3(1-
1
n+1
)
=
3n
n+1

选择题
单项选择题