问题
解答题
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10. ①求证:数列{lgan}是等差数列; ②设bn=
|
答案
①当n=1时,a2=9S1+10=9×10+10=100;
当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,
可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.
∴数列{an}是以10为首项,10为公比的等比数列,
∴an=10×10n-1=10n.
∴lgan+1-lgan=lg
=1,an+1 an
∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,
∴bn=
=3(3 n(n+1)
-1 n
),1 n+1
∴Tn=3[(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=3(1-1 n+1
)=1 n+1
.3n n+1