问题 解答题
设数列{an}、{bn}(bn>0,n∈N*),满足an=
lgb1+lgb2+…+lgbn
n
(n∈N*),证明:{an}为等差数列的充要条件是{bn}为等比数列.
答案

证明:充分性:若{bn}为等比数列,设公比为q,则an=

nlgb1+lg(q•q2qn-1)
n
=
nlgb1+lgq
n(n-1)
2
n
=lgb1+(n-1)lgq^
1
2
,an+1-an=lgq^
1
2
为常数,

∴{an}为等差数列.

必要性:由an=

lgb1+lgb2++lgbn
n
得nan=lgb1+lgb2++lgbn,(n+1)an+1=lgb1+lgb2++lgbn+1

∴n(an+1-an)+an+1=lgbn+1

若{an}为等差数列,设公差为d,

则nd+a1+nd=lgbn+1

∴bn+1=10^a1+2nd,bn=10^a1+2(n-1)d

bn+1
bn
=102d为常数.

∴{bn}为等比数列.

单项选择题
单项选择题