问题
解答题
设数列{an}、{bn}(bn>0,n∈N*),满足an=
|
答案
证明:充分性:若{bn}为等比数列,设公比为q,则an=
=nlgb1+lg(q•q2qn-1) n
=lgb1+(n-1)lgq^nlgb1+lgq n(n-1) 2 n
,an+1-an=lgq^1 2
为常数,1 2
∴{an}为等差数列.
必要性:由an=
得nan=lgb1+lgb2++lgbn,(n+1)an+1=lgb1+lgb2++lgbn+1,lgb1+lgb2++lgbn n
∴n(an+1-an)+an+1=lgbn+1.
若{an}为等差数列,设公差为d,
则nd+a1+nd=lgbn+1,
∴bn+1=10^a1+2nd,bn=10^a1+2(n-1)d.
∴
=102d为常数.bn+1 bn
∴{bn}为等比数列.