问题
解答题
(1)当a、b为何值时,多项式a2+b2-4a+6b+18有最小值,并求出这个最小值.
(2)已知(x+y)2=25,(x-y)2=9,求xy与x2+y2的值.
答案
(1)原式=(a2-4a+4)+(b2+6a+9)+5
=(a-2)2+(b+3)2+5,
∴当a=2,b=3时,多项式有最小值,最小值为5;
(2)∵(x+y)2=25,(x-y)2=9,
∴xy=
=(x+y)2-(x-y)2 4
=4;25-9 4
x2+y2=
=(x+y)2+(x-y)2 2
=17.25+9 2