问题 解答题
设数列{an}的前n项和为SnSn2-2Sn-anSn+1=0,n=1,2,3…
(1)求a1,a2
(2)求Sn与Sn-1(n≥2)的关系式,并证明数列{
1
Sn-1
}是等差数列.
(3)求S1•S2•S3…S2010•S2011的值.
答案

(1)∵Sn2-2Sn-anSn+1=0,

∴取n=1,得S12-2S1-a1S1+1=0,即a12-2a1-a12+1=0,解之得a1=

1
2

取n=2,得S22-2S2-a2S2+1=0,即(

1
2
+a22-2(
1
2
+a2)-a2
1
2
+a2)+1=0,解之得a2=
1
6

(2)由题设Sn2-2Sn-anSn+1=0,

当n≥2时,an=Sn-Sn-1,代入上式,化简得SnSn-1-2Sn+1=0

∴Sn=

1
2-Sn-1
,可得Sn-1-1=
1
2-Sn-1
-1=
Sn-1-1
2-Sn-1

1
Sn-1
=
2-Sn
Sn-1
=-1+
1
Sn-1-1

∴数列{

1
Sn-1
}是以
1
S1-1
=-2为首项,公差d=-1的等差数列.

(3)由(2)得

1
Sn-1
=-2+(n-1)×(-1)=-n-1,

可得Sn=1-

1
n+1
=
n
n+1

∴S1•S2•S3•…•S2010•S2011=

1
2
×
2
3
×
3
4
×…×
2010
2011
×
2011
2012
=
1
2012

即S1•S2•S3•…•S2010•S2011的值为

1
2012

单项选择题
问答题 简答题