问题
填空题
已知a2b2+a2+b2+1=4ab,则a=______,b=______.
答案
a2b2+a2+b2+1=4ab变形得:a2b2+2ab+1+a2+b2+2ab=(ab+1)2+(a+b)2=0,
∴ab+1=0,a+b=0,
解得:a=1,b=-1,或a=-1,b=1.
故答案为:1或-1;-1或1
已知a2b2+a2+b2+1=4ab,则a=______,b=______.
a2b2+a2+b2+1=4ab变形得:a2b2+2ab+1+a2+b2+2ab=(ab+1)2+(a+b)2=0,
∴ab+1=0,a+b=0,
解得:a=1,b=-1,或a=-1,b=1.
故答案为:1或-1;-1或1