问题
解答题
已知首项为
(Ⅰ) 求数列{an}的通项公式; (Ⅱ) 证明Sn+
|
答案
(Ⅰ)设等比数列{an}的公比为q,
∵-2S2,S3,4S4等差数列,
∴2S3=-2S2+4S4,即S4-S3=S2-S4,
得2a4=-a3,∴q=-
,1 2
∵a1=
,∴an=3 2
•(-3 2
)n-1=(-1)n-1•1 2
;3 2n
(Ⅱ)证明:由(Ⅰ)得,Sn=
=1-(-
[1-(-3 2
)n]1 2 1+ 1 2
)n,1 2
∴Sn+
=1-(-1 Sn
)n+1 2
,1 1-(-
)n1 2
当n为奇数时,Sn+
=1+(1 Sn
)n+1 2
=1+1 1+(
)n1 2
+1 2n
=2+2n 1+2n
,1 2n(2n+1)
当n为偶数时,Sn+
=1-(1 Sn
)n+1 2
=2+1 1-(
)n1 2
,1 2n(2n-1)
∴Sn+
随着n的增大而减小,1 Sn
即Sn+
≤S1+1 Sn
=1 S1
,且Sn+13 6
≤S2+1 Sn
=1 S2
,25 12
综上,有Sn+
≤1 Sn
(n∈N*)成立.13 6