问题
填空题
(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
|
答案
根据已知的结论,由类比推理得:
已知椭圆
+x2 a2
=1(a>b>0),一个焦点将焦点弦分成长为m,n的两段,则y2 b2
+1 m
=1 n
.2a b2
(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
|
根据已知的结论,由类比推理得:
已知椭圆
+x2 a2
=1(a>b>0),一个焦点将焦点弦分成长为m,n的两段,则y2 b2
+1 m
=1 n
.2a b2