问题
解答题
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*); (2)若{bn}是等差数列,证明:c=0. |
答案
证明:(1)若c=0,则an=a1+(n-1)d,Sn=
,bn=n[(n-1)d+2a] 2
=nSn n2
.(n-1)d+2a 2
当b1,b2,b4成等比数列时,则b22=b1b4,
即:(a+
)2=a(a+d 2
),得:d2=2ad,又d≠0,故d=2a.3d 2
因此:Sn=n2a,Snk=(nk)2a=n2k2a,n2Sk=n2k2a.
故:Snk=n2Sk(k,n∈N*).
(2)bn=
=nSn n2+c n2 (n-1)d+2a 2 n2+c
=n2
+c(n-1)d+2a 2
-c(n-1)d+2a 2 (n-1)d+2a 2 n2+c
=
-(n-1)d+2a 2
. ①c (n-1)d+2a 2 n2+c
若{bn}是等差数列,则{bn}的通项公式是bn=An+B型.
观察①式后一项,分子幂低于分母幂,
故有:
=0,即cc (n-1)d+2a 2 n2+c
=0,而(n-1)d+2a 2
≠0,(n-1)d+2a 2
故c=0.
经检验,当c=0时{bn}是等差数列.