问题 解答题
已知数列{an}中,a1=
3
5
an=2-
1
an-1
(n≥2,n∈N+)
,数列{bn}满足:bn=
1
an-1
(n∈N+)

(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项an
(3)求数列{an}中的最大项和最小项,并说明理由.
答案

(1)证明:∵bn+1-bn=

1
an+1-1
-
1
an-1
=
1
2-
1
an
-1
-
1
an-1
=
an
an-1
-
1
an-1

∴{bn}为公差d=1,首项b1=

1
a1-1
=-
5
2
的等差数列.

(2)由(1)知:bn=

1
an-1
=b1+(n-1)•d=n-
7
2

an=1+

2
2n-7

(3)∵an=1+

2
2n-7

∴n≥4时,数列{an}单调递减且an>1;1≤an≤3时,数列{an}单调递减且an<1,

∴数列{an}的最大项为a4=3;最小项为a3=-1.

多项选择题
填空题