问题
解答题
若{an}是各项均不为零的等差数列,公差为d,Sn为其前n项和,且满足
(Ⅰ)求an和Tn; (Ⅱ)若对一切正整数n,Tn≥λ•(
|
答案
(Ⅰ)在
=S2n-1中,a 2n
令n=1,可得a12=s1=a1,
n=2,可得a22=s3=a1+a2+a3,
∴a1=1,a22=a1+a2+a3,a1=1,
a1+a1+d+a1+2d=(a1+d)2,
解得,d=2,
从而an=a1+(n-1)×d=2n-1,…(4分)
bn=
(1 2
-1 2n-1
),1 2n+1
于是Tn=
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]=1 2n+1
.…(8分)n 2n+1
(Ⅱ)λ≤
•2n,n 2n+1
令cn=
•2n,n 2n+1
则cn+1-cn=
•2n+1-n+1 2n+3
•2nn 2n+1
=
•2n>0,…(12分)2n2+3n+2 (2n+1)(2n+3)
于是{cn}是单调递增数列,(cn)min=c1=
,2 3
故λ≤
.…(14分)2 3